What happens when you attempt to start the engine? If nothing happens when you turn the key, check the battery to determine its state of charge. Many starters won’t do a thing unless at least 10 volts is available from the battery. A low battery does not necessarily mean the battery is the problem, though. The battery may have been run down by prolonged cranking while trying to start the engine. Or, the battery’s low state of charge may be the result of a problem with the charging system. Either way, the battery needs to be recharged and tested.

If the battery is low, the next logical step might be to try starting the engine with another battery or a charger. If the engine cranks normally and roars to life, you can assume the problem was a dead battery, or a charging problem that allowed the battery to run down. If the battery accepts a charge and tests okay, checking the output of the charging system should help you identify any problems there.

A charging system that is working properly should produce a charging voltage of somewhere around 14 volts when idle with the lights and accessories off. When the engine is first started, the charging voltage should rise quickly to about two volts above base battery voltage, then taper off, levelling out at the specified voltage.

The exact charging voltage will vary according to the battery’s state of charge, the load on the electrical system, and temperature. The lower the temperature, the higher the charging voltage. The higher the temperature, the lower the charging voltage. The charging range for a typical alternator might be 13.9 to 14.4 volts at 80 degrees F, but increase to 14.9 to 15.8 volts at subzero temperatures.

ALSO READ  6 Great Car Battery Maintenance Tips

If the charging system is not putting out the required voltage, is it the alternator or the regulator? Full fielding the alternator to bypass the regulator should tell you if it is working correctly. Or, take the alternator to a parts store and have it bench tested. If the charging voltage goes up when the regulator is bypassed, the problem is the regulator (or the engine computer in the case of computer-regulated systems). If there is no change in output voltage, the alternator is the culprit.

Many times one or more diodes in the alternator rectifier assembly will have failed, causing a drop in the unit’s output. The alternator will still produce current, but not enough to keep the battery fully charged. This type of failure will show up on an oscilloscope as one or more missing humps in the alternator waveform. Most charging system analysers can detect this type of problem.